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ABSTRACT 
 

In this paper, we exhibit a couple of established iterative routines for tackling straight comparisons; such systems 

are broadly utilized, particularly for the arrangement of vast issues, for example, those emerging from the 

discretization of direct fractional differential mathematical statements. We depict the iterative or aberrant strategies, 

which begin from a close estimation to the genuine arrangement and if joined, determine a grouping of close 

estimates the cycle of reckonings being rehashed till the obliged exactness is gotten. It implies that in iterative 

routines the measure of calculations relies on upon the exactness needed. 

Keywords: Iteraitive, Ashynchornous Algorithm 

I. INTRODUCTION 

 

Asynchronous iterations have been introduced by 

Chazan and Miranker (1969) [5] for the solution of 

linear equation. The communication penalty, and the 

overall execution time of many algorithms, can often be 

substantially reduced by means of asynchronous 

implementations.[4] The main characteristic of an 

asynchronous algorithm is that the local Algorithms do 

not have to wait at predetermined points for 

predetermined messages to become available. We thus 

allow some processors to compute faster and execute 

more iterations than others, we allow some processors to 

communicate more frequently than others, and we allow 

the communication delays to be substantial and 

unpredictable. We also allow the communication 

channels to deliver message out of orders, that is, in a 

different order than the one in which they were 

transmitted. 

 

Given a distributed algorithm, for each processor, there 

is a set of times at which the processor executes some 

computations, some other times at which the processor 

sends some messages to other processors, and yet some 

other times at which the processor receives messages 

from other processors. The algorithm is termed 

synchronous, in the sense of the Preceding subsection, if 

it is mathematically equivalent to one for which the 

times of computation, message transmission, and 

message reception are fixed and given a priori. We say 

that the algorithm is asynchronous if these times can 

vary widely in two different executions of the algorithm 

with an attendant effect on the results of the computation 

[4]. The most extreme type of asynchronous algorithm is 

one that can tolerate changes in the problem data or in 

the distributed computing system, without restarting 

itself to some predetermined initials conditions. Iterative 

methods, also known as trial and error methods, are 

based on the ideas of successive approximation. They 

start with one or more initial approximation to the root 

and obtain a sequence of approximations by repeating a 

fixed sequence of steps till the solution with reasonable 

accuracy is obtained. Iterative methods, generally, give 

one root at a time. Iterative methods are very 

cumbersome and time-consuming for solving non-linear 

equations manually. However, they are best suited for 

use on computers, due to following reasons: 

1. Iterative methods can be concisely expressed as 

computational algorithms. 

2. It is possible to formulate, using trial and error, 

algorithms which tackle a class of similar problems. 

For instance a general computational algorithm to 
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solve polynomial equations of order n(where n is an 

integer) may be written. 

3. Routing errors are negligible in trial and error 

procedures compared to procedures based on closed 

form solutions. 

In computational mathematics an iterative method is a 

mathematical procedure that generates a sequence of 

improving approximate solutions for a class of problems. 

A specific implementation of an iterative method, 

including the termination criteria, is an algorithm of the 

iterative method. An iterative method is called 

convergent if the corresponding sequence converges for 

given initial approximations. A mathematically rigorous 

convergence analysis of an iterative method is usually 

performed; however, heuristic-based iterative methods 

are also common. 

 

A method uses iteration if it yields successive 

approximations to a required value by repetition of a 

certain procedure. An "iterative" process can be 

explained by the flowchart given in Fig. 2. There are 

four parts in the process, namely, initialization, decision, 

computation and update. The functions of the four parts 

are as follows: 

1. Initialization: The parameters of the function and a 

decision parameter in this part are set to their initial 

values. The decision parameter is used to determine 

when to exit from the loop. 

2. Computation: The required computation is 

performed in this part. 

3. Decision: The decision parameter is to determine 

whether to remain in the loop. 

4. Update: The decision parameter is updated, and a 

transfer to the next iteration results. 

 

II. METHODS AND MATERIAL 

 

A. Analysis of Parallel Algorithms 

 

The most important three criteria we use to analyze a 

parallel algorithm are: running time, the number of 

processors in the computational model and cost [21]. 

The running time of a parallel algorithm is defined as the 

time taken by this algorithm to solve a problem on a 

parallel computer. Specifically, we are interested in the 

worst time, which means the time required for solving 

the most difficult instance of the problem using this 

algorithm. Usually, we count how many elementary 

steps are performed by an algorithm when solving a 

problem (worst case) as a measure of running time. 

There are two different kinds of elementary steps: 

 

1.  Computational steps: A computational step is an 

arithmetic or logic operation performed on a datum 

within a processor, like adding two numbers. 

2. Routing steps: A routing step takes place when a 

datum of constant size is transmitted from one 

processor to another processor via shared memory or 

an interconnection network.  

 

Each step (computational or routing) takes a constant 

number of time units, and the running time of a parallel 

algorithm is a function of the size of input. For a 

problem of size N, we use t (N) to denote the worst case 

number of time units required by the parallel algorithm. 

We use p(N) to denote the number of processors used by 

a parallel algorithm to solve a problem of size N And the 

cost c(N) of a parallel algorithm for a problem of size N 

is then defined as c(N) = t(N) x p(N). The cost of a 

parallel algorithm is an upper bound on the total number 

of elementary steps executed. 

 

B. Overview of Asynchronous Algorithm 

 

This situation arises principally in data networks, where 

the nodes and the communication links can fail or be 

repaired as various distributed algorithms that control 

the network are executed. In an asynchronous 

implementation of the iteration x: = f(x), processors are 

not required to wait to receive all messages generated 

during the previous iteration. Rather, each processor is 

allowed to keep iterating on its own component at its 

own pace. If the current value of the component updated 

by some other processors is not available, then some 

outdated value received at some time in the past is used 

instead. Furthermore processors are not required to 

communicate their results after each iteration but only 

once in a while. We allow some processors to 

communicate more frequently than others, and we allow 

the communication delays to be substantial and 

unpredictable. We also allow the communication 

channels to deliver messages out of order, i.e.; in a 

different order than the one they were transmitted. 
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C. Advantages of Asynchronous Algorithm 

 

There are several potential advantages that may be 

gained from asynchronous execution [12]  

1.  Reduction of the synchronization penalty 

 

There is no overhead such as the one associated with the 

global synchronization method. In particular, a processor 

can proceed with the next iteration without waiting for 

all other processors to complete the current iteration, and 

without waiting for a synchronization algorithm to 

execute. Furthermore, in certain cases, there are even 

advantages over the local synchronization method as we 

now discuss. Suppose that an algorithm happens to be 

such that each iteration leaves the value of xi unchanged. 

With local synchronization, processor i must still send 

messages to every processor j with (i, j)  A because 

processor j will not otherwise proceed to the next 

iteration. Consider now a somewhat more realistic case 

where the algorithm is such that a typical iteration is 

very likely to leave xi unchanged. Then each processor j 

with (i, j)  A will be often found in a situation where it 

waits for rather uninformative messages stating that the 

value of xi has not changed. 

 

In an asynchronous execution, processor j does not wait 

for messages from processor i and the progress of the 

algorithm is likely to be faster. A similar argument can 

be made for the case where xi changes only slightly 

between iterations. Notice that the situation is similar to 

the case of synchronization via rollback, except that in 

an asynchronous algorithm processors do not roll back 

even if they iterate on the basis of outdated and later 

invalidated information. 

2. Ease of Restarting 

 

Suppose that the processors are engaged in the solution 

of an optimization problem and that suddenly one of the 

parameters of the problem changes. (Such a situation is 

common and natural in the context of data networks or 

in the quasistatic control of large scale systems.)  

In a synchronous execution, all processors should be 

informed, abort the computation, and then reinitiate (in a 

synchronized manner) the algorithm. 

 

In an asynchronous implementation no such 

reinitialization is required. Rather, each processor 

incorporates the new parameter value in its iterations as 

soon as it learns the new value, without waiting for all 

processors to become aware of the parameter change. 

When all processors learn the new parameter value, the 

algorithm becomes the correct (asynchronous) iteration. 

3. Reduction of the Effects of bottlenecks: 

Suppose that the computational power of processor i 

suddenly deteriorate drastically. In a synchronous 

execution the entire algorithm would be slowed down. 

In an asynchronous execution, however, only the 

progress of xi and of the components strongly influenced 

by xi would be affected; the remaining components 

would still retain the capacity of making unhampered 

progress. Thus the effects of temporary malfunctions 

tend to be localized. The same argument applies to the 

case where a particular communication channel is 

suddenly slowed down. 

4. Convergence acceleration due to a Gauss-Seidel 

Effect 

 

With a Gauss-Seidel execution, convergence often takes 

place with fewer updates of each component; the reason 

being that new information is incorporated faster in the 

update formulas. On the other hand Gauss-Seidel 

iterations are generally less parallelizable. Asynchronous 

algorithms have the potential of displaying a Gauss-

Seidel effect because newest information is incorporated 

into the computations as soon as it becomes available, 

while retaining maximal parallelism as in Jacobi type 

algorithms. 

 

D. Drawback of asynchronous algorithm 

 

A major potential drawback of asynchronous algorithms 

is that they cannot be described mathematically by the 

iteration x (t + 1) = f (x (t)). Thus, even if this iteration is 

convergent, corresponding the asynchronous iteration 

could be divergent, and indeed this is sometimes the 

case. Even if the convergence of the asynchronous 

iteration can be established, the corresponding analysis 

is often difficult.  

Another difficulty relates to the fact that an 

asynchronous algorithm may have converged (within a 

desired accuracy) but the algorithm does not terminate 

because no processor is awrare of this fact. 
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 An interesting fact is that some asynchronous 

algorithms, called totally asynchronous, or chaotic, 

can tolerate arbitrarily large communication and 

computation delays, while other asynchronous 

algorithms, called partially asynchronous are not 

guaranteed to work unless there is an upper bound 

on these delays. The convergence mechanisms at 

work in each of these two cases are genuinely 

different and so are their analyses. 

 

Here we discuss the model of asynchronous computation 

[4]. Let the set X and the function f. Let t be an integer 

variable used to index the events of interest in the 

computing system. Although t will be referred to as a 

time variable, it may have little relation with "real time".  

Let xi(t) be the value of xi residing in the memory of the 

i
th
 processor at time t. We assume that there is a set of 

times Ti at which xi is updated. To account for the 

possibility that the i
th
 processor may not have access to 

the most recent values of the components of x, we 

assume that 

 

xi(t+1) = fi (xl (ri
i
(t)),,..xn (rn

i
(t))), t  T

i
        (1.1) 

Where TJ
i
(t) are times satisfying 

0 < tj
i
(t)   t,  t  0. 

At all times t  T
i
, xi (t) is left unchanged and 

xi (t + 1) = xi (t),  t  T
i
         (1.2) 

We assume that the algorithm is initialized with some 

x(0)  X. 

 

The above mathematical description can be used as a 

model of asynchronous iterations executed by either a 

message passing distributed system or a shared memory 

parallel computer. 

 

The difference t - tj
i
(t) is equal to zero for a synchronous 

execution. The larger this difference is, the larger is the 

amount of a synchronism in the algorithm. Of course, 

for the algorithm to make any progress at all we should 

not allow tj
i
 (t) to remain forever small. Furthermore, no 

processor should be allowed to drop out of the 

computation and stop iterating. For this reason, certain 

assumptions need to be imposed. There are two different 

types of assumptions which we state below. 

 

Assumption1.1 (Total asynchronism) The sets Ti are 

infinite and if {tk} is a sequence of elements of T
i
 which 

tends to infinity, then limk tj
i
 (tk) =  for every j. 

Assumption 1.2 (Partial asynchronism) There exists a 

positive constant B such that: 

(a) For every t  0 and every i, at least one of the 

elements of the sets {t, tl + 1,…, t + B-1} belongs to T
i
. 

(b) There holds 

t - B < tj
i
(t) ≤ t,  i,j,  t  T

i
                 (1.3) 

(c) There holds tj
i
(t) = t, for all i and t  T

i
. 

 

The constant B of Assumption 1.2. to be called the 

asynchronism measure, bounds the amount by which the 

information available to a processor can be outdated. 

Notice that a Jacobi-type synchronous iteration is the 

special case of partial asynchronism in which B=1.  

 

Notice also that Assumption 1.2(c) states that the 

information available to processor i regarding its own 

component is never outdated. Such an assumption is 

natural in most contexts, but could be violated in certain 

types of shared memory parallel computing systems if 

we allow more than one processor to update the same 

component of x. It turns out that if we relax Assumption 

1.2(c), the convergence of certain asynchronous 

algorithm is destroyed [14, 4]. Parts (a) and (b) of 

Assumption 1.2 are typically satisfied in practice. 

 

Asynchronous algorithm can exhibit three different 

types of behavior (other than guaranteed divergence): 

 

a) Convergence under total asynchronism. 

b) Convergence under partial asynchronism, for every 

value of B, but possible divergence under totally 

asynchronous execution. 

c) Convergence under partial asynchronism if B is 

small enough and possible divergence if B is large 

enough. 

Tottaly Asynchronous Algorithm 

Totally asynchronous convergence results have been 

obtained by Chazan and Miranker  (1969) [5] for linear 

iterations, Miellou (1975a) [17], Baudet (1978) [1], EI 

Tarazi (1982) [9], Miellou and Spiteri (1985) [19] for 

contracting iterations, Miellou (1975b) [18] and 

Bertsekas (1982) [2] for monotone iterations, and 

Bertsekas (1983) [3] for general iterations. Related 

results can be also found in [23, 24, 25]. The following 

general result is from (Bertsekas, 1983) [3]. 
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Proposition 1.1. Let X = 
p
I=1  

p
i=i R

ni
. Suppose that 

for each i E  {1, . . ,p}, there exists a sequence {X,(k)} 

of subsets of Xi such that: 

(a) Xi(k + 1)  xi (k) for all k >  0. 

(b) The sets X(k) = 
p

i=iXi(k) have the property f(x)  

X(k + 1) 

(c) Every limit point of a sequence {x(k)} with the 

property x(k)  X(k) for all k, is a fixed point of f 

Then, under Assumption 1.1 (total asynchronism), and if 

x(0)  X(0), every limit point of the 

Sequence {x (t)} generated by the asynchronous 

iteration (1.1)-(1.2) is a fixed point of f  

Proof: We show by induction that for each k > 0, there 

is a time tk such that: 

(a) x(t)  X(k) for all t  tk. 

(b) For all i and t  T
i
 with t  tk, we have x

i
  x(k) 

where 

x
i
 =(xl (tj

i
 (t)), xz (t, (t)), xn (t, (t))),   t  

T
i
 

 

E. Partially Asynchronous Algorithms 

 

We now consider iterations satisfying the partial 

asynchronism Assumption 1.2. Since old information is 

"purged" from the algorithm after at most B units, it is 

natural to describe the “state of the algorithm at time t 

by the vector z (t)  XB defined by 

z(t) = (x(t), x(t - 1), ..., x(t - B + 1)) 

We the n notice that x(t + 1) can be determined [cf. Eqs. 

(1.1)-(1.3)] in terms of z(t); in particular k, knowledge of 

x(r), for r ≤ t - B is not needed. We assume that the 

iteration mapping f is continuous and has a nonempty set 

X*  X of fixed points. Let Z* be the set of all vectors 

z*  X
B
 of the form z* = (x*, x*,..., x*), where x* 

belongs to X*. We present a sometime useful 

convergence result, which employs a Lyapunov-type 

function d defined on the set X
B
. 

 

F. Termination Of Asynchronous Iterations: 

 

In practice iterative algorithms are executed only for a 

finite number of iterations, until some termination 

condition is satisfied. In the case of asynchronous 

iterations, the problem of determining whether 

termination conditions are satisfied is rather difficult 

because each processor possesses only partial 

information on the progress of the algorithm. 

 

We now introduce one possible approach for handling 

the termination problem for asynchronous iterations. In 

this approach, the problem is decomposed into two parts: 

 

a) An asynchronous iterative algorithm is modified so 

that it terminates in finite time. 

b) A special procedure is used to detect termination in 

finite time after it has occurred. 

 

In order to handle the termination problem, we have to 

be a little more specific about the model of 

interprocessor communication. While the general model 

of asynchronous iterations introduced in Section 5 can 

be used for both shared memory and message-passing 

parallel architectures, we adopt here a more explicit 

message-passing model. In particular, we assume that 

each processor j sends messages with the value of xj to 

every other processor i. Processor i keeps a buffer with 

the most recently received value of xj We denote the 

value in this buffer at time t by xj
i
 . this value was 

transmitted by processor j at some earlier time tj
i
 (t) and 

therefore xj
i
 (t) = xj (tj

i
) (t)). We also assume the 

following: 

 

Assumption1.3 

a) If t  T
i
 and xi (t + 1)  xi (t) then processor i will 

eventually send a message to every other processor. 

b) If a processor i has sent a message with the value of 

xi (t) to some other processor j, then processor i will 

send a new message to processor j only after the 

value of xi changes (due to an update by processor 

i). 

c) Messages are received in the order that they are 

transmitted. 

d) Each processor sends at least one message to every 

other processor. 
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Assumption 1.3(d) is only needed to get the algorithm 

started. Assumption 1.3(b) is crucial and has the 

following consequences. If the value of x(t) settles to 

some final value, then there will be some time t*after 

which no messages will be sent. Furthermore, all 

messages transmitted before t* will eventually reach 

their destinations and the algorithm will eventually reach 

a quiescent state where none of the variables xi changes 

and no message are in transit. We can then say that the 

algorithm has terminated. 

 

More finally, we view termination as equivalent to the 

following two properties 

 

(i) No, message is in transit. 

(ii) An update by some processor i cause no change in 

the value of xi. 

 

Property (ii) is a collection of local termination 

conditions. There are several algorithms for termination 

detection when a termination condition can be 

decomposed as above [6, 4]. Thus termination detection 

causes no essential difficulties, under the assumption 

that the asynchronous algorithm terminates in finite time. 

 

III. CONCLUSION 

 
In this we examine circulated calculation, for every 

processor, there is a situated of times at which the 

processor executes a few processing’s, some different 

times at which the processor sends a few messages to 

different processors, but some different times at which 

the processor gets messages from different processors. 

The calculation is termed synchronous, in the feeling of 

the former subsection, on the off chance that it is 

scientifically proportional to one for which the seasons 

of reckoning, message transmission, and message 

gathering are altered and given from the earlier. We say 

that the calculation is non-concurring if these 

circumstances can shift generally in two distinct 

executions of the calculation with a chaperon impact on 

the aftereffects of the reckoning. 
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