
IJSRSET15141 | Received: 06 July 2015 | Accepted: 14 July 2015 | July-August 2015 [(1)4: 40-46]

© 2015 IJSRSET | Volume 1 | Issue 4 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

40

An Iterative Method in Asynchronous System using

Asynchronous Algorithms
Ajitesh S. Baghel, Rakesh Kumar Katare

Department of Computer Science, A. P. S. Univesity, Rewa Madhya Pradesh, India

ABSTRACT

In this paper, we exhibit a couple of established iterative routines for tackling straight comparisons; such systems

are broadly utilized, particularly for the arrangement of vast issues, for example, those emerging from the

discretization of direct fractional differential mathematical statements. We depict the iterative or aberrant strategies,

which begin from a close estimation to the genuine arrangement and if joined, determine a grouping of close

estimates the cycle of reckonings being rehashed till the obliged exactness is gotten. It implies that in iterative

routines the measure of calculations relies on upon the exactness needed.

Keywords: Iteraitive, Ashynchornous Algorithm

I. INTRODUCTION

Asynchronous iterations have been introduced by

Chazan and Miranker (1969) [5] for the solution of

linear equation. The communication penalty, and the

overall execution time of many algorithms, can often be

substantially reduced by means of asynchronous

implementations.[4] The main characteristic of an

asynchronous algorithm is that the local Algorithms do

not have to wait at predetermined points for

predetermined messages to become available. We thus

allow some processors to compute faster and execute

more iterations than others, we allow some processors to

communicate more frequently than others, and we allow

the communication delays to be substantial and

unpredictable. We also allow the communication

channels to deliver message out of orders, that is, in a

different order than the one in which they were

transmitted.

Given a distributed algorithm, for each processor, there

is a set of times at which the processor executes some

computations, some other times at which the processor

sends some messages to other processors, and yet some

other times at which the processor receives messages

from other processors. The algorithm is termed

synchronous, in the sense of the Preceding subsection, if

it is mathematically equivalent to one for which the

times of computation, message transmission, and

message reception are fixed and given a priori. We say

that the algorithm is asynchronous if these times can

vary widely in two different executions of the algorithm

with an attendant effect on the results of the computation

[4]. The most extreme type of asynchronous algorithm is

one that can tolerate changes in the problem data or in

the distributed computing system, without restarting

itself to some predetermined initials conditions. Iterative

methods, also known as trial and error methods, are

based on the ideas of successive approximation. They

start with one or more initial approximation to the root

and obtain a sequence of approximations by repeating a

fixed sequence of steps till the solution with reasonable

accuracy is obtained. Iterative methods, generally, give

one root at a time. Iterative methods are very

cumbersome and time-consuming for solving non-linear

equations manually. However, they are best suited for

use on computers, due to following reasons:

1. Iterative methods can be concisely expressed as

computational algorithms.

2. It is possible to formulate, using trial and error,

algorithms which tackle a class of similar problems.

For instance a general computational algorithm to

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

41

solve polynomial equations of order n(where n is an

integer) may be written.

3. Routing errors are negligible in trial and error

procedures compared to procedures based on closed

form solutions.

In computational mathematics an iterative method is a

mathematical procedure that generates a sequence of

improving approximate solutions for a class of problems.

A specific implementation of an iterative method,

including the termination criteria, is an algorithm of the

iterative method. An iterative method is called

convergent if the corresponding sequence converges for

given initial approximations. A mathematically rigorous

convergence analysis of an iterative method is usually

performed; however, heuristic-based iterative methods

are also common.

A method uses iteration if it yields successive

approximations to a required value by repetition of a

certain procedure. An "iterative" process can be

explained by the flowchart given in Fig. 2. There are

four parts in the process, namely, initialization, decision,

computation and update. The functions of the four parts

are as follows:

1. Initialization: The parameters of the function and a

decision parameter in this part are set to their initial

values. The decision parameter is used to determine

when to exit from the loop.

2. Computation: The required computation is

performed in this part.

3. Decision: The decision parameter is to determine

whether to remain in the loop.

4. Update: The decision parameter is updated, and a

transfer to the next iteration results.

II. METHODS AND MATERIAL

A. Analysis of Parallel Algorithms

The most important three criteria we use to analyze a

parallel algorithm are: running time, the number of

processors in the computational model and cost [21].

The running time of a parallel algorithm is defined as the

time taken by this algorithm to solve a problem on a

parallel computer. Specifically, we are interested in the

worst time, which means the time required for solving

the most difficult instance of the problem using this

algorithm. Usually, we count how many elementary

steps are performed by an algorithm when solving a

problem (worst case) as a measure of running time.

There are two different kinds of elementary steps:

1. Computational steps: A computational step is an

arithmetic or logic operation performed on a datum

within a processor, like adding two numbers.

2. Routing steps: A routing step takes place when a

datum of constant size is transmitted from one

processor to another processor via shared memory or

an interconnection network.

Each step (computational or routing) takes a constant

number of time units, and the running time of a parallel

algorithm is a function of the size of input. For a

problem of size N, we use t (N) to denote the worst case

number of time units required by the parallel algorithm.

We use p(N) to denote the number of processors used by

a parallel algorithm to solve a problem of size N And the

cost c(N) of a parallel algorithm for a problem of size N

is then defined as c(N) = t(N) x p(N). The cost of a

parallel algorithm is an upper bound on the total number

of elementary steps executed.

B. Overview of Asynchronous Algorithm

This situation arises principally in data networks, where

the nodes and the communication links can fail or be

repaired as various distributed algorithms that control

the network are executed. In an asynchronous

implementation of the iteration x: = f(x), processors are

not required to wait to receive all messages generated

during the previous iteration. Rather, each processor is

allowed to keep iterating on its own component at its

own pace. If the current value of the component updated

by some other processors is not available, then some

outdated value received at some time in the past is used

instead. Furthermore processors are not required to

communicate their results after each iteration but only

once in a while. We allow some processors to

communicate more frequently than others, and we allow

the communication delays to be substantial and

unpredictable. We also allow the communication

channels to deliver messages out of order, i.e.; in a

different order than the one they were transmitted.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

42

C. Advantages of Asynchronous Algorithm

There are several potential advantages that may be

gained from asynchronous execution [12]

1. Reduction of the synchronization penalty

There is no overhead such as the one associated with the

global synchronization method. In particular, a processor

can proceed with the next iteration without waiting for

all other processors to complete the current iteration, and

without waiting for a synchronization algorithm to

execute. Furthermore, in certain cases, there are even

advantages over the local synchronization method as we

now discuss. Suppose that an algorithm happens to be

such that each iteration leaves the value of xi unchanged.

With local synchronization, processor i must still send

messages to every processor j with (i, j)  A because

processor j will not otherwise proceed to the next

iteration. Consider now a somewhat more realistic case

where the algorithm is such that a typical iteration is

very likely to leave xi unchanged. Then each processor j

with (i, j)  A will be often found in a situation where it

waits for rather uninformative messages stating that the

value of xi has not changed.

In an asynchronous execution, processor j does not wait

for messages from processor i and the progress of the

algorithm is likely to be faster. A similar argument can

be made for the case where xi changes only slightly

between iterations. Notice that the situation is similar to

the case of synchronization via rollback, except that in

an asynchronous algorithm processors do not roll back

even if they iterate on the basis of outdated and later

invalidated information.

2. Ease of Restarting

Suppose that the processors are engaged in the solution

of an optimization problem and that suddenly one of the

parameters of the problem changes. (Such a situation is

common and natural in the context of data networks or

in the quasistatic control of large scale systems.)

In a synchronous execution, all processors should be

informed, abort the computation, and then reinitiate (in a

synchronized manner) the algorithm.

In an asynchronous implementation no such

reinitialization is required. Rather, each processor

incorporates the new parameter value in its iterations as

soon as it learns the new value, without waiting for all

processors to become aware of the parameter change.

When all processors learn the new parameter value, the

algorithm becomes the correct (asynchronous) iteration.

3. Reduction of the Effects of bottlenecks:

Suppose that the computational power of processor i

suddenly deteriorate drastically. In a synchronous

execution the entire algorithm would be slowed down.

In an asynchronous execution, however, only the

progress of xi and of the components strongly influenced

by xi would be affected; the remaining components

would still retain the capacity of making unhampered

progress. Thus the effects of temporary malfunctions

tend to be localized. The same argument applies to the

case where a particular communication channel is

suddenly slowed down.

4. Convergence acceleration due to a Gauss-Seidel

Effect

With a Gauss-Seidel execution, convergence often takes

place with fewer updates of each component; the reason

being that new information is incorporated faster in the

update formulas. On the other hand Gauss-Seidel

iterations are generally less parallelizable. Asynchronous

algorithms have the potential of displaying a Gauss-

Seidel effect because newest information is incorporated

into the computations as soon as it becomes available,

while retaining maximal parallelism as in Jacobi type

algorithms.

D. Drawback of asynchronous algorithm

A major potential drawback of asynchronous algorithms

is that they cannot be described mathematically by the

iteration x (t + 1) = f (x (t)). Thus, even if this iteration is

convergent, corresponding the asynchronous iteration

could be divergent, and indeed this is sometimes the

case. Even if the convergence of the asynchronous

iteration can be established, the corresponding analysis

is often difficult.

Another difficulty relates to the fact that an

asynchronous algorithm may have converged (within a

desired accuracy) but the algorithm does not terminate

because no processor is awrare of this fact.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

43

 An interesting fact is that some asynchronous

algorithms, called totally asynchronous, or chaotic,

can tolerate arbitrarily large communication and

computation delays, while other asynchronous

algorithms, called partially asynchronous are not

guaranteed to work unless there is an upper bound

on these delays. The convergence mechanisms at

work in each of these two cases are genuinely

different and so are their analyses.

Here we discuss the model of asynchronous computation

[4]. Let the set X and the function f. Let t be an integer

variable used to index the events of interest in the

computing system. Although t will be referred to as a

time variable, it may have little relation with "real time".

Let xi(t) be the value of xi residing in the memory of the

i
th
 processor at time t. We assume that there is a set of

times Ti at which xi is updated. To account for the

possibility that the i
th
 processor may not have access to

the most recent values of the components of x, we

assume that

xi(t+1) = fi (xl (ri
i
(t)),,..xn (rn

i
(t))), t  T

i
 (1.1)

Where TJ
i
(t) are times satisfying

0 < tj
i
(t)  t, t  0.

At all times t  T
i
, xi (t) is left unchanged and

xi (t + 1) = xi (t), t  T
i
 (1.2)

We assume that the algorithm is initialized with some

x(0)  X.

The above mathematical description can be used as a

model of asynchronous iterations executed by either a

message passing distributed system or a shared memory

parallel computer.

The difference t - tj
i
(t) is equal to zero for a synchronous

execution. The larger this difference is, the larger is the

amount of a synchronism in the algorithm. Of course,

for the algorithm to make any progress at all we should

not allow tj
i
 (t) to remain forever small. Furthermore, no

processor should be allowed to drop out of the

computation and stop iterating. For this reason, certain

assumptions need to be imposed. There are two different

types of assumptions which we state below.

Assumption1.1 (Total asynchronism) The sets Ti are

infinite and if {tk} is a sequence of elements of T
i
 which

tends to infinity, then limk tj
i
 (tk) =  for every j.

Assumption 1.2 (Partial asynchronism) There exists a

positive constant B such that:

(a) For every t  0 and every i, at least one of the

elements of the sets {t, tl + 1,…, t + B-1} belongs to T
i
.

(b) There holds

t - B < tj
i
(t) ≤ t, i,j, t  T

i
 (1.3)

(c) There holds tj
i
(t) = t, for all i and t  T

i
.

The constant B of Assumption 1.2. to be called the

asynchronism measure, bounds the amount by which the

information available to a processor can be outdated.

Notice that a Jacobi-type synchronous iteration is the

special case of partial asynchronism in which B=1.

Notice also that Assumption 1.2(c) states that the

information available to processor i regarding its own

component is never outdated. Such an assumption is

natural in most contexts, but could be violated in certain

types of shared memory parallel computing systems if

we allow more than one processor to update the same

component of x. It turns out that if we relax Assumption

1.2(c), the convergence of certain asynchronous

algorithm is destroyed [14, 4]. Parts (a) and (b) of

Assumption 1.2 are typically satisfied in practice.

Asynchronous algorithm can exhibit three different

types of behavior (other than guaranteed divergence):

a) Convergence under total asynchronism.

b) Convergence under partial asynchronism, for every

value of B, but possible divergence under totally

asynchronous execution.

c) Convergence under partial asynchronism if B is

small enough and possible divergence if B is large

enough.

Tottaly Asynchronous Algorithm

Totally asynchronous convergence results have been

obtained by Chazan and Miranker (1969) [5] for linear

iterations, Miellou (1975a) [17], Baudet (1978) [1], EI

Tarazi (1982) [9], Miellou and Spiteri (1985) [19] for

contracting iterations, Miellou (1975b) [18] and

Bertsekas (1982) [2] for monotone iterations, and

Bertsekas (1983) [3] for general iterations. Related

results can be also found in [23, 24, 25]. The following

general result is from (Bertsekas, 1983) [3].

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

44

Proposition 1.1. Let X = 
p
I=1  

p
i=i R

ni
. Suppose that

for each i E {1, . . ,p}, there exists a sequence {X,(k)}

of subsets of Xi such that:

(a) Xi(k + 1)  xi (k) for all k > 0.

(b) The sets X(k) = 
p

i=iXi(k) have the property f(x) 

X(k + 1)

(c) Every limit point of a sequence {x(k)} with the

property x(k)  X(k) for all k, is a fixed point of f

Then, under Assumption 1.1 (total asynchronism), and if

x(0)  X(0), every limit point of the

Sequence {x (t)} generated by the asynchronous

iteration (1.1)-(1.2) is a fixed point of f

Proof: We show by induction that for each k > 0, there

is a time tk such that:

(a) x(t)  X(k) for all t  tk.

(b) For all i and t  T
i
 with t  tk, we have x

i
  x(k)

where

x
i
 =(xl (tj

i
 (t)), xz (t, (t)), xn (t, (t))),  t 

T
i

E. Partially Asynchronous Algorithms

We now consider iterations satisfying the partial

asynchronism Assumption 1.2. Since old information is

"purged" from the algorithm after at most B units, it is

natural to describe the “state of the algorithm at time t

by the vector z (t)  XB defined by

z(t) = (x(t), x(t - 1), ..., x(t - B + 1))

We the n notice that x(t + 1) can be determined [cf. Eqs.

(1.1)-(1.3)] in terms of z(t); in particular k, knowledge of

x(r), for r ≤ t - B is not needed. We assume that the

iteration mapping f is continuous and has a nonempty set

X*  X of fixed points. Let Z* be the set of all vectors

z*  X
B
 of the form z* = (x*, x*,..., x*), where x*

belongs to X*. We present a sometime useful

convergence result, which employs a Lyapunov-type

function d defined on the set X
B
.

F. Termination Of Asynchronous Iterations:

In practice iterative algorithms are executed only for a

finite number of iterations, until some termination

condition is satisfied. In the case of asynchronous

iterations, the problem of determining whether

termination conditions are satisfied is rather difficult

because each processor possesses only partial

information on the progress of the algorithm.

We now introduce one possible approach for handling

the termination problem for asynchronous iterations. In

this approach, the problem is decomposed into two parts:

a) An asynchronous iterative algorithm is modified so

that it terminates in finite time.

b) A special procedure is used to detect termination in

finite time after it has occurred.

In order to handle the termination problem, we have to

be a little more specific about the model of

interprocessor communication. While the general model

of asynchronous iterations introduced in Section 5 can

be used for both shared memory and message-passing

parallel architectures, we adopt here a more explicit

message-passing model. In particular, we assume that

each processor j sends messages with the value of xj to

every other processor i. Processor i keeps a buffer with

the most recently received value of xj We denote the

value in this buffer at time t by xj
i
 . this value was

transmitted by processor j at some earlier time tj
i
 (t) and

therefore xj
i
 (t) = xj (tj

i
) (t)). We also assume the

following:

Assumption1.3

a) If t  T
i
 and xi (t + 1)  xi (t) then processor i will

eventually send a message to every other processor.

b) If a processor i has sent a message with the value of

xi (t) to some other processor j, then processor i will

send a new message to processor j only after the

value of xi changes (due to an update by processor

i).

c) Messages are received in the order that they are

transmitted.

d) Each processor sends at least one message to every

other processor.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

45

Assumption 1.3(d) is only needed to get the algorithm

started. Assumption 1.3(b) is crucial and has the

following consequences. If the value of x(t) settles to

some final value, then there will be some time t*after

which no messages will be sent. Furthermore, all

messages transmitted before t* will eventually reach

their destinations and the algorithm will eventually reach

a quiescent state where none of the variables xi changes

and no message are in transit. We can then say that the

algorithm has terminated.

More finally, we view termination as equivalent to the

following two properties

(i) No, message is in transit.

(ii) An update by some processor i cause no change in

the value of xi.

Property (ii) is a collection of local termination

conditions. There are several algorithms for termination

detection when a termination condition can be

decomposed as above [6, 4]. Thus termination detection

causes no essential difficulties, under the assumption

that the asynchronous algorithm terminates in finite time.

III. CONCLUSION

In this we examine circulated calculation, for every

processor, there is a situated of times at which the

processor executes a few processing’s, some different

times at which the processor sends a few messages to

different processors, but some different times at which

the processor gets messages from different processors.

The calculation is termed synchronous, in the feeling of

the former subsection, on the off chance that it is

scientifically proportional to one for which the seasons

of reckoning, message transmission, and message

gathering are altered and given from the earlier. We say

that the calculation is non-concurring if these

circumstances can shift generally in two distinct

executions of the calculation with a chaperon impact on

the aftereffects of the reckoning.

IV. REFERENCES

[1] Baudet, G.M. (1978). Asynchronous iterative

methods for multiprocessors, Journal of the ACM,

2, pp. 226-244.

[2] Bertsekas, D.P. (1982). Distributed dynamic

programming, IEEE Transactions on Automatic

Control, AC-27, pp. 610-616.

[3] Bertsekas, D.P. (1983). Distributed asynchronous

computation of fixed points, Mathematical

Programming, 27, pp. 107-120.

[4] Bertsekas, D.P., and J.N. Tsitsiklis (1989). Parallel

and Distributed Computation: Numerical

Methods, Prentice Hall, Englewood Cliffs, NJ.

[5] Chazan, D., and W. Miranker (1969). Chaotic

relaxation, Linear Algebra and its Applications, 2,

pp. 199-222.

[6] Dijkstra, E.W., and C.S. Scholten (1980).

Termination detection for diffusing computations,

Information Processing Letters, 11, pp. 1-4.

[7] Dubois, M., and F.A. Briggs (1982). Performance

of synchronized iterative processes in

multiprocessor systems, IEEE Transactions on

Software Engineering, 8, pp. 419-431.

[8] E.D. Dekel , Nassimi , S. Sabni. "Parallel matrix

and graph algorithms," SIAM J. Comput.,

10(4),657-675, 1981.

[9] El Tarazi, M.N. (1982). Some convergence results

for asynchronous algorithms, Numerisch

Mathematik, 39, pp. 325-340.

[10] Fortune,S; and J. Wyllie. 1978 Parallelelism in

random access machines, proceedings of the

10thAnnual ACM Symposium on theory of

computing, PP, 114-118

[11] J. Ammon. "Hypercube Connectivity within cc

NUMA architectore, Silicon Graphics, 20 ILN,"

Shoreline Blvd. Ms 565, Mountain View,

CA94043.

[12] Kung, H.T. (1976). Synchronized and

asynchronous parallel algorithms for

multiprocessors, in Algorithms and Complexity,

J.F. Traub (Ed.), Academic, pp. 153-200.

[13] Lavenberg, S., R. Muntz, and B. Samadi (1983).

Performance analysis of a rollback method for

distributed simulation, in Performance 83, A.K.

Agrawala and S.K. Tripathi (Eds.), North Holland,

pp. 117-132.

[14] Lubachevsky, B., and D. Mitra (1986). A chaotic

asynchronous algorithm for computing the fixed

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

46

point of a nonnegative matrix of unit spectral

radius, Journal of the ACM, 33, pp. 130-150.

[15] M. Flynn. Some computer organizations and their

effectives. IEEE Trans. Comput., C(21):948-960,

1972.

[16] M.J. Quinn. "Parallel Computing," Mc Graw-Hill,

INC, 1994.

[17] Miellou, J.C. (1975a). Algorithmes de relaxation

chaotique a retards, R.A.IR.O., 9, R-1, pp. 55-82.

[18] Miellou, lC. (1975b). Iterations chaotiques a

retards, etudes de la convergence dans Ie cas

d'espaces partiellement ordonnes, Comptes

Rendus, Academie de Sciences de Paris, 280,

Serie A, pp. 233-236.

[19] Miellou, J.C., and P. Spiteri (1985). Un critere de

convergences pour des methods generales de point

fixe, Mathematical Modelling and Numerical

Analysis, 19, pp. 645-669.

[20] Mitra, D., and I. Mitrani (1984). Analysis and

optimum performance of two message passing

parallel processors synchronized by rollback, in

Performance '84, E. Gelenbe (Ed.), North Hol-

Iand, pp. 35-50.

[21] S. G. Akl. The Design and Analysis of Parallel

Algorithms. Prentice Hall, Englewood Cliffs,

1997.

[22] S. G. Ald. Parallel Computation: Models And

Methods. Prentice Hall, Upper Saddle River,

1997.

[23] Uresin, A., and M. Dubois (1986). Generalized

asynchronous iterations, in Lecture Q Notes in

Computer Science, 237, Springer Verlag, pp. 272-

278.

[24] Uresin, A., and M. Dubois (1988a). Sufficient

conditions for the convergence of asynchronous

iterations, Technical Report, Computer Research

Institute, University of Southern California, Los

Angeles, California, U.S.A.

[25] Uresin, A. and M. Dubois (1988b). Parallel

asynchronous algorithms for discrete data,

Technical Report CRI-88-05, Computer Research

Institute, University of Southern California, Los

Angeles, California, U.S.A.

